伙伴系统

Linux中采用4KB大小的页框作为标准的内存分配单元,在实际应用中,经常需要分配一组连续的页框,而频繁的申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框,这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。

Linux内核引入了伙伴系统算法来避免这种情况。其把所有的空闲页框分组为11个块链表,每个块链表分别包含大小为1、2、4、8、16、32、64、128、256、512和1024个连续页框的页框块。最大可以申请1024个连续页框,也即4MB大小的连续空间。

假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了即将页框分为两个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。

页框块在释放时,会主动将两个连续的页框块合并成一个较大的页框块。

伙伴算法具有以下一些缺点:

  • 一个很小的块往往会阻碍一个大块的合并,一个系统中,对内存块的分配,大小是随机的,一片内存中仅一个小的内存块没有释放,旁边两个大的就不能合并。
  • 算法中有一定的浪费现象,伙伴算法是按2的幂次方大小进行分配内存块,当然这样做是有原因的,即为了避免把大的内存块拆的太碎,更重要的是使分配和释放过程迅速。但是他也带来了不利的一面,如果所需内存大小不是2的幂次方,就会有部分页面浪费。有时还很严重。比如原来是1024个块,申请了16个块,再申请600个块就申请不到了,因为已经被分割了。
  • 另外拆分和合并涉及到 较多的链表和位图操作,开销还是比较大的。

Buddy算法的分配原理:

假如系统需要4个页面大小的内存块,该算法就到free_area[2]中查找,如果链表中有空闲块,就直接从中摘下并分配出去。如果没有,算法将顺着数组向上查找free_area[3],如果free_area[3]中有空闲块,则将其从链表中摘下,分成等大小的两部分,前四个页面作为一个块插入free_area[2],后4个页面分配出去,free_area[3]中也没有,就再向上查找,如果free_area[4]中有,就将这16个页面等分成两份,前一半挂入free_area[3]的链表头部,后一半的8个页等分成两等分,前一半挂free_area[2]的链表中,后一半分配出去。假如free_area[4]也没有,则重复上面的过程,知道到达free_area数组的最后,如果还没有则放弃分配。

Buddy算法的释放原理:

内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。当释放一个块时,先在其对应的链表中考查是否有伙伴存在,如果没有伙伴块,就直接把要释放的块挂入链表头;如果有,则从链表中摘下伙伴,合并成一个大块,然后继续考察合并后的块在更大一级链表中是否有伙伴存在,直到不能合并或者已经合并到了最大的块。

Buddy算法对伙伴的定义如下:

  • 两个块大小相同;
  • 两个块地址连续;
  • 两个块必须是同一个大块中分离出来的;

slab机制

slab是Linux系统的一种内存分配机制,其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内存碎片,而且处理速度也太慢。而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符是一类),每次当要申请这样一个对象,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存到该列表中,而不是直接返回给伙伴系统,从而避免这些内存碎片。slab分配器并不丢弃已分配的对象,而是释放并把它们保存在内存中。当以后又要请求新的对象时,就可以从内存直接获取而不用重复初始化。

说明

本文转载自文章伙伴系统和slab机制